Connect with us
https://ainews.site/wp-content/uploads/2021/11/zox-leader.png

Published

on

The Ultimate Managed Hosting Platform

Un membro della Purple Hacker Alliance a Dongguan, in Cina, nell’agosto 2020 controlla gli attacchi informatici in tutto il mondo. Gli hack sono aumentati dalla pandemia e dalla battaglia in Ucraina.

Il governatore del Canada, ministero comune e internazionale, ospedali e una compagnia aerea: una litania di ultimi attacchi informatici ha scoperto scarse difese contro gli hacker, indipendentemente dagli avvertimenti di essere più vigili dall’invasione russa dell’Ucraina.

La scorsa settimana, il Canada e 4 diverse località internazionali occidentali, insieme all’America, hanno avvertito che la Russia si stava preparando a lanciare grandi attacchi informatici in opposizione agli alleati dell’Ucraina come rappresaglia per l’assistenza a Kiev e le sanzioni imposte a Mosca.

In aumento da anni e trasformandosi in sempre più subdoli, “centinaia” di attacchi informatici, insieme ai team di hacker russi, prendono di mira il Canada ogni giorno, secondo Cherie Henderson, un alto funzionario del Canadian Safety Intelligence Service.

Il Canada è stato il secondo dopo la Gran Bretagna per numero di vittime segnalate di phishing, spoofing, estorsioni e diverse frodi abilitate al Web, in conformità con un rapporto dell’FBI sui crimini Web nel 2020. (Il rapporto esclude l’America dal record).

L’ultima vittima è stata la compagnia aerea canadese Sunwing. Un attacco informatico ha sicuramente colpito uno dei suoi fornitori, provocando un’interruzione delle operazioni della compagnia aerea che ha lasciato centinaia di persone bloccate negli hotspot di viaggio in America, Messico e Caraibi.

Le aziende potrebbero anche essere “colte alla sprovvista e vedere le loro azioni aziendali notevolmente ridotte”, ha commentato Benoit Dupont, un ricercatore di sicurezza informatica presso il College of Montreal.

Alcune, in particolare le imprese più piccole, “non hanno sempre risorse sufficienti e investire nella sicurezza informatica non sarà sempre una priorità assoluta”, ha informato AFP.

Semplicemente prima dell’inizio della battaglia in Ucraina alla fine di febbraio, il Canadian Middle for Cyber ​​Safety del governo federale ha ricordato la necessità di proteggere da sponsorizzato dalla Russia .

Che lo sia o meno atti vandalici, furto di proprietà mentali o dati proprietari, tecniche contabili congelate e persino tecniche complete di laptop, i pericoli riguardano aziende di tutte le dimensioni.

Obiettivi di finanza, energia, telecomunicazioni

Evan Koronewski, portavoce dell’Istituto per la sicurezza delle comunicazioni, ha menzionato che la società canadese di intercettazioni digitali monitora “l’esercizio del rischio informatico diretto a reti infrastrutturali cruciali, insieme a queste nei settori monetario, energetico e delle telecomunicazioni”.

Tuttavia, ha aggiunto, che tutti i settori “sono ispirati a prendere parola e a concentrarsi sull’opportunità di esercitare un elevato rischio informatico”.

Alcuni si sono mossi, in accordo con Trevor Neiman dell’Enterprise Council of Canada, un’affiliazione che rappresenta i maggiori datori di lavoro della nazione.

“Nel periodo che precede l’invasione russa dell’Ucraina, le aziende canadesi hanno adottato uno stato di coscienza accresciuto, di solito hanno adottato varie misure proattive per rafforzare le loro difese informatiche”, ha affermato.

La società di servizi pubblici Hydro-Quebec, ad esempio, ha intensificato “la sorveglianza in particolare per questo rischio”, ha informato l’AFP il suo portavoce Cendrix Bouchard.

In Canada, un’azienda su 4 ha riferito di essere stata colpita da attacchi informatici nel 2021 e più della metà ha pagato riscatti agli hacker che hanno contaminato le tecniche dei loro laptop con malware, secondo un sondaggio Novipro-Leger sull’autunno scorso.

Le quantità di riscatto sono aumentate e potrebbero raggiungere un numero di milioni di {dollari}.

Ottawa ha introdotto lo scorso anno 80 milioni di dollari canadesi (62,5 milioni di dollari USA) in 4 anni per rafforzare le difese informatiche della nazione.

Tuttavia, la Camera di commercio canadese ha affermato che non era sufficiente, rilevando che è una goccia nel secchio rispetto alle quantità spese dagli amici canadesi del G7.

“Gli Stati Uniti, Israele e il Regno Unito stanno investendo miliardi” per rendere più vivaci le loro difese informatiche, ha affermato.

Perché l’inizio della pandemia, che ha notato il telelavoro di persone in più, sono aumentati esponenzialmente in tutto il mondo.

“Gli attori informatici dannosi, sponsorizzati o meno dallo stato o in qualsiasi altro caso, in genere cercano di raccogliere i frutti delle crisi”, ha definito Marjorie Dickman di BlackBerry.

“Lo abbiamo notato durante la pandemia quando gli attori del rischio hanno lanciato ripetuti assalti a tema Covid-19 e hanno cercato di sfruttare le lacune di sicurezza nell’ambiente del lavoro da casa”, ha affermato, incluso il fatto che gli hacker ora usano le menzioni della battaglia in Ucraina per attirare vittime.

“Dovresti essere attaccato in modo efficiente solo una volta per danneggiare sostanzialmente la tua azienda”, ha avvertito Rocco Rossi, capo della Camera di commercio dell’Ontario, descrivendola come “una battaglia in corso”.

“Anche dopo la fine della battaglia in Ucraina”, ha affermato, “questi punti di sicurezza informatica non andranno via”.


Microsoft, Samsung, Okta sono stati hackerati. Sono questi gli attacchi informatici russi di cui eravamo stati avvertiti?


© 2022 AFP

Quotazione:
Le aziende canadesi si stanno arrampicando per difendersi dall’aumento degli attacchi informatici (2022, 27 aprile)
recuperato il 27 aprile 2022
da https://techxplore.com/information/2022-04-canadian-businesses-scrambling-defend-cyberattacks.html

Questo documento è soggetto a copyright. Al di fuori di qualsiasi onesto trattamento a scopo di ricerca o analisi personale, n
la metà potrebbe anche essere riprodotta senza il permesso scritto. Il materiale contenuto viene fornito esclusivamente per le funzioni di dati.



The Ultimate Managed Hosting Platform

Source link

Continue Reading

Ultime notizie

Il dispositivo di memoria neuromorfico simula i neuroni e le sinapsi

Published

on

Neuromorphic memory device simulates neurons and synapses

The Ultimate Managed Hosting Platform

Sistema di reminiscenza neuromorfica costituito da strati di reminiscenza sul retro instabili e ad alta non volatilità che emulano rispettivamente le proprietà neuronali e sinaptiche. Punteggio di credito: The Korea Superior Institute of Science and Know-how (KAIST)

I ricercatori hanno segnalato un sistema di reminiscenza neuromorfica di dimensioni nanometriche che emula neuroni e sinapsi contemporaneamente in una cellula unitaria, un altro passo verso il raggiungimento dell’obiettivo del calcolo neuromorfico progettato per imitare accuratamente la mente umana con gadget a semiconduttore.

Obiettivi del calcolo neuromorfico da comprendere (AI) imitando i meccanismi dei neuroni e che compongono il . Impressionati dalle caratteristiche cognitive della mente umana che i sistemi informatici attuali non possono presentare, i gadget neuromorfici sono stati ampiamente studiati. Tuttavia, gli attuali circuiti neuromorfici basati su CMOS (Complementary Steel-Oxide Semiconductor) si limitano a unire neuroni sintetici e sinapsi senza interazioni sinergiche e l’implementazione concomitante di neuroni e sinapsi rimane comunque un problema. Per gestire questi punti, una squadra di analisi guidata dal professor Keon Jae Lee della Divisione di scienza e ingegneria delle forniture ha applicato i meccanismi di lavoro organico delle persone introducendo le interazioni neurone-sinapsi in una singola cellula di reminiscenza, in qualche modo rispetto alla strategia standard di connessione elettrica gadget neuronali e sinaptici sintetici.

Proprio come le carte da gioco di grafica industriale, i gadget sinaptici sostitutivi studiati in precedenza erano tipicamente utilizzati per accelerare i calcoli paralleli, che mostrano chiare variazioni rispetto ai meccanismi operativi della mente umana. La squadra di analisi ha applicato le interazioni sinergiche tra neuroni e sinapsi all’interno del sistema di reminiscenza neuromorfica, emulando i meccanismi della comunità neurale organica. Inoltre, il sistema neuromorfico sviluppato può scambiare circuiti neuronali CMOS avanzati con un unico sistema, offrendo un’eccessiva scalabilità ed efficacia di valore.

La mente umana è costituita da una comunità elegante di 100 miliardi di neuroni e 100 trilioni di sinapsi. Le caratteristiche e gli edifici dei neuroni e delle sinapsi possono cambiare in modo flessibile in linea con gli stimoli esterni, adattandosi all’ambiente circostante. La squadra di analisi ha sviluppato un sistema neuromorfico durante il quale coesistono reminiscenze a breve ea lungo termine utilizzando gadget di reminiscenza instabili e non volatili che imitano rispettivamente i tratti dei neuroni e delle sinapsi. Viene utilizzato un sistema di modifica della soglia come e la reminiscenza del cambiamento di fase viene utilizzata come sistema non volatile. Due gadget a film sottile sono integrati senza elettrodi intermedi, implementando la pratica adattabilità dei neuroni e delle sinapsi all’interno della reminiscenza neuromorfica.

Il dispositivo di memoria neuromorfico simula i neuroni e le sinapsi

Operazione di riqualificazione all’interno dell’array del sistema neuromorfico. a) Grafico schematico che mostra l’impatto della riqualificazione. b) Immagine al microscopio elettronico a scansione dell’array del sistema neuromorfico. c) Esempio di coaching “F” per la riqualificazione dai un’occhiata. d) Evoluzione dello stato di reminiscenza dell’array del sistema neuromorfico per lo schema di coaching e riqualificazione ingenuo. Punteggio di credito: The Korea Superior Institute of Science and Know-how (KAIST)

Il professor Keon Jae Lee ha definito: “I neuroni e le sinapsi lavorano insieme per determinare le caratteristiche cognitive equivalenti alla reminiscenza e allo studio, quindi simulare ciascuna di esse è una componente vitale per l’intelligenza sintetica ispirata al cervello. Il neuromorfico sviluppato il sistema imita inoltre l’impatto di riqualificazione che consente uno studio rapido delle informazioni dimenticate implementando un impatto di suggerimenti costruttivi tra e sinapsi”.

Questa conseguenza, intitolata “Emulazione simultanea della plasticità sinaptica e intrinseca che utilizza una sinapsi memristiva”, è stata stampata all’interno della situazione del 19 maggio 2022 di Comunicazioni sulla natura.


Il team presenta hardware neuromorfico altamente scalabile ispirato al cervello


Informazioni extra:

Sang Hyun Sung et al, Emulazione simultanea della plasticità sinaptica e intrinseca utilizzando una sinapsi memristiva, Comunicazioni sulla natura (2022). DOI: 10.1038/s41467-022-30432-2

Quotazione:
Il sistema di reminiscenza neuromorfica simula neuroni e sinapsi (2022, 20 maggio)
recuperato il 20 maggio 2022
da https://techxplore.com/information/2022-05-neuromorphic-memory-device-simulates-neurons.html

Questo documento è soggetto a copyright. Al di fuori di ogni veridicità di trattamento finalizzata alla ricerca o all’analisi personale, n
la metà potrebbe anche essere riprodotta senza il permesso scritto. Il materiale di contenuto viene offerto esclusivamente per funzioni informative.

L'ultima piattaforma di hosting gestito

Collegamento sorgente

Il post Il dispositivo di memoria neuromorfico simula i neuroni e le sinapsi è apparso per la prima volta su Le ultime novità in fatto di intelligenza artificiale | Robotica AI | Notizie sull’apprendimento automatico.

The Ultimate Managed Hosting Platform

Source link

Continue Reading

Ultime notizie

Rete neurale per aiutare ecologisti, silvicoltori e operatori di linee elettriche a dimensionare alberi dall’alto – Le ultime novità in materia di intelligenza artificiale | Robotica AI

Published

on

Neural network to help ecologists, foresters and power line operators size up trees from above

The Ultimate Managed Hosting Platform

Hugues Thomas ei suoi collaboratori dell’U of T Institute for Aerospace Research hanno creato una nuovissima tecnica per la navigazione robotica basata principalmente sullo studio approfondito autocontrollato. Punteggio di credito: Safa Jinje

Un gruppo di ricercatori guidato dal professor Tim Barfoot del College of Toronto sta utilizzando una nuova tecnica che consente ai robot di evitare di scontrarsi con gli individui prevedendo le aree a lungo termine di ostacoli dinamici del loro percorso.

La sfida sarà probabilmente introdotta alla Worldwide Convention on Robotics and Automation a Filadelfia alla fine di Might.

I risultati di una simulazione, che non sono altro che peer-reviewed, possono essere trovati sul servizio di prestampa di arXiv.

“Il precetto del nostro lavoro è avere a prevedere cosa faranno le persone in un futuro rapido”, afferma Hugues Thomas, ricercatore post-dottorato nel laboratorio di Barfoot presso l’Istituto di ricerca aerospaziale U of T al College of Utilized Science & Engineering. “Ciò consente al robot di anticipare moderatamente il movimento degli individui che incontra piuttosto che reagire non appena si trova di fronte a questi ostacoli”.

Per risolvere il luogo di manovra, il robot utilizza le mappe della griglia di occupazione spaziotemporale (SOGM). Si tratta di mappe della griglia 3D mantenute all’interno del processore robotico, con ogni cella della griglia 2D contenente i dettagli previsti sull’esercizio in quella casa in un determinato momento. La robotica sceglie le sue azioni future elaborando queste mappe per mezzo degli attuali algoritmi di pianificazione della traiettoria.

Un altro software chiave utilizzato dall’equipaggio è il rilevamento e la portata delicati (lidar), un know-how di rilevamento della distanza molto simile al radar, oltre al fatto che utilizza la delicatezza invece del suono. Ogni ping del lidar crea una certa misura salvata nella reminiscenza del robot. Il lavoro precedente dell’equipaggio ha mirato all’etichettatura di questi fattori in base principalmente alle loro proprietà dinamiche. Questo aiuta il robot a riconoscere vari tipi di oggetti all’interno del suo ambiente.

La comunità SOGM dell’equipaggio è attualmente in grado di riconoscere 4 classi di livello lidar: la parte inferiore; infissi eterni, corrispondenti a tramezzi; questioni mobili ma immobili, corrispondenti a sedie e tavoli; e ostacoli dinamici, corrispondenti agli individui. Non è richiesta alcuna etichettatura umana delle informazioni.

“Con questo lavoro, speriamo di consentire ai robot di navigare per mezzo di aree interne affollate in un metodo più socialmente consapevole”, afferma Barfoot. “Predicendo il luogo in cui andranno gli individui e i diversi oggetti, siamo in grado di pianificare percorsi che anticipano ciò che faranno le parti dinamiche”.

All’interno del documento, l’equipaggio studia i risultati redditizi dell’algoritmo eseguito nella simulazione. Il problema successivo è indicare la relativa efficienza negli ambienti del mondo reale, il luogo in cui le azioni umane saranno difficili da prevedere. Come parte di questo sforzo, l’equipaggio ha esaminato il loro progetto sul terreno principale di U of T’s Myhal Middle for Engineering Innovation & Entrepreneurship, il luogo in cui la robotica era in grado di trasferire i precedenti studenti universitari impegnati.







Punteggio di credito: College di Toronto

“Una volta che sperimentiamo la simulazione, abbiamo broker che sono codificati per una condotta sicura e andranno a un certo livello seguendo la traiettoria migliore per arrivarci”, afferma Thomas. “Tuttavia, non è quello che fanno gli individui nella vita reale”.

Quando le persone si trasferiscono per mezzo di aree, possono affrettarsi o smettere bruscamente di parlare con un’altra persona o cambiare direzione. Per far fronte a questo tipo di condotta, la comunità utilizza un approccio di studio automatico denominato studio autocontrollato.

Lo studio autocontrollato contrasta con il diverso , corrispondente allo studio rafforzato, il luogo in cui l’algoritmo impara a svolgere un’attività massimizzando una nozione di ricompensa in un metodo per tentativi ed errori. Sebbene questa strategia funzioni efficacemente per alcuni compiti, ad esempio un computer che studia per praticare uno sport corrispondente agli scacchi o al Go, non è la cosa migliore per questo tipo di navigazione.

“Insieme a , crei un campo nero che rende oscura la connessione tra l’ingresso, ciò che vede il robot, e l’uscita, o fa il robot”, afferma Thomas. “Potrebbe inoltre richiedere che il robotico fallisca molti casi prima di apprendere le chiamate corrette e non avevamo bisogno del nostro robotico per studiare andando a sbattere contro gli individui”.

Al contrario, lo studio autocontrollato è facile e comprensibile, il che significa che è più semplice vedere come la robotica sta facendo le sue scelte. Questa strategia può anche essere moderatamente incentrata sul punto piuttosto che sull’oggetto, il che suggerisce che la comunità ha una migliore interpretazione della conoscenza del sensore crudo, consentendo previsioni multimodali.

“Molte strategie convenzionali rilevano gli individui come oggetti personali particolari e creano traiettorie per loro. Tuttavia, poiché il nostro manichino è incentrato sul punto, il nostro algoritmo non quantifica gli individui come oggetti di una persona particolare, tuttavia riconosce le aree in cui devono essere gli individui. E se hai un gruppo più numeroso di individui, il regno diventerà più grande”, afferma Thomas.

“Questa analisi offre un percorso promettente che avrebbe implicazioni costruttive in aree corrispondenti alla guida autonoma e alla fornitura robotica, il luogo in cui un’ambientazione non è del tutto prevedibile”.

Prima o poi, la troupe desidera vedere se amplierà la propria comunità per studiare spunti più delicati dalle parti dinamiche di una scena.

“Questo può richiedere molte più conoscenze di coaching”, afferma Barfoot. “Ma sicuramente deve essere fattibile perché ci siamo prefissati di generare le informazioni in un metodo computerizzato aggiuntivo: il luogo in cui il robotico può raccogliere conoscenze extra durante la navigazione, praticare mode predittive più elevate quando non è in funzione, dopodiché usa queste la volta successiva naviga in un’area.


Un modello per migliorare la capacità dei robot di consegnare oggetti agli esseri umani


Informazioni extra:

Hugues Thomas, Matthieu Gallet de Saint Aurin, Jian Zhang, Timothy D. Barfoot, Studiare le mappe della griglia di occupazione spaziotemporale per la navigazione permanente in scene dinamiche. arXiv:2108.10585v2 [cs.RO], doi.org/10.48550/arXiv.2108.10585

Quotazione:
I ricercatori progettano robot “socialmente consapevoli” che possono anticipare e tenersi lontani dagli individui durante il trasferimento (2022, 18 maggio)
recuperato il 19 maggio 2022
da https://techxplore.com/information/2022-05-socially-aware-robots-safely-people.html

Questo documento è soggetto a copyright. A parte ogni onesto trattamento a fini di esame o analisi personale, n
la metà potrebbe anche essere riprodotta senza il permesso scritto. Il materiale contenuto viene fornito esclusivamente per funzioni informative.



The Ultimate Managed Hosting Platform

Source link

Continue Reading

Ultime notizie

Nuovo metodo per eliminare gli attacchi informatici in meno di un secondo – L’ultima novità nell’intelligenza artificiale | Robotica AI

Published

on

New method to kill cyberattacks in less than a second

The Ultimate Managed Hosting Platform

Hugues Thomas ei suoi collaboratori dell’U of T Institute for Aerospace Research hanno creato una nuovissima tecnica per la navigazione robotica basata principalmente sullo studio approfondito autocontrollato. Punteggio di credito: Safa Jinje

Un gruppo di ricercatori guidato dal professor Tim Barfoot del College of Toronto sta utilizzando una nuova tecnica che consente ai robot di evitare di scontrarsi con gli individui prevedendo le aree a lungo termine di ostacoli dinamici del loro percorso.

La sfida sarà probabilmente introdotta alla Worldwide Convention on Robotics and Automation a Filadelfia alla fine di Might.

I risultati di una simulazione, che non sono altro che peer-reviewed, possono essere trovati sul servizio di prestampa di arXiv.

“Il precetto del nostro lavoro è avere a prevedere cosa faranno le persone in un futuro rapido”, afferma Hugues Thomas, ricercatore post-dottorato nel laboratorio di Barfoot presso l’Istituto di ricerca aerospaziale U of T al College of Utilized Science & Engineering. “Ciò consente al robot di anticipare moderatamente il movimento degli individui che incontra piuttosto che reagire non appena si trova di fronte a questi ostacoli”.

Per risolvere il luogo di manovra, il robot utilizza le mappe della griglia di occupazione spaziotemporale (SOGM). Si tratta di mappe della griglia 3D mantenute all’interno del processore robotico, con ogni cella della griglia 2D contenente i dettagli previsti sull’esercizio in quella casa in un determinato momento. La robotica sceglie le sue azioni future elaborando queste mappe per mezzo degli attuali algoritmi di pianificazione della traiettoria.

Un altro software chiave utilizzato dall’equipaggio è il rilevamento e la portata delicati (lidar), un know-how di rilevamento della distanza molto simile al radar, oltre al fatto che utilizza la delicatezza invece del suono. Ogni ping del lidar crea una certa misura salvata nella reminiscenza del robot. Il lavoro precedente dell’equipaggio ha mirato all’etichettatura di questi fattori in base principalmente alle loro proprietà dinamiche. Questo aiuta il robot a riconoscere vari tipi di oggetti all’interno del suo ambiente.

La comunità SOGM dell’equipaggio è attualmente in grado di riconoscere 4 classi di livello lidar: la parte inferiore; infissi eterni, corrispondenti a tramezzi; questioni mobili ma immobili, corrispondenti a sedie e tavoli; e ostacoli dinamici, corrispondenti agli individui. Non è richiesta alcuna etichettatura umana delle informazioni.

“Con questo lavoro, speriamo di consentire ai robot di navigare per mezzo di aree interne affollate in un metodo più socialmente consapevole”, afferma Barfoot. “Predicendo il luogo in cui andranno gli individui e i diversi oggetti, siamo in grado di pianificare percorsi che anticipano ciò che faranno le parti dinamiche”.

All’interno del documento, l’equipaggio studia i risultati redditizi dell’algoritmo eseguito nella simulazione. Il problema successivo è indicare la relativa efficienza negli ambienti del mondo reale, il luogo in cui le azioni umane saranno difficili da prevedere. Come parte di questo sforzo, l’equipaggio ha esaminato il loro progetto sul terreno principale di U of T’s Myhal Middle for Engineering Innovation & Entrepreneurship, il luogo in cui la robotica era in grado di trasferire i precedenti studenti universitari impegnati.







Punteggio di credito: College di Toronto

“Una volta che sperimentiamo la simulazione, abbiamo broker che sono codificati per una condotta sicura e andranno a un certo livello seguendo la traiettoria migliore per arrivarci”, afferma Thomas. “Tuttavia, non è quello che fanno gli individui nella vita reale”.

Quando le persone si trasferiscono per mezzo di aree, possono affrettarsi o smettere bruscamente di parlare con un’altra persona o cambiare direzione. Per far fronte a questo tipo di condotta, la comunità utilizza un approccio di studio automatico denominato studio autocontrollato.

Lo studio autocontrollato contrasta con il diverso , corrispondente allo studio rafforzato, il luogo in cui l’algoritmo impara a svolgere un’attività massimizzando una nozione di ricompensa in un metodo per tentativi ed errori. Sebbene questa strategia funzioni efficacemente per alcuni compiti, ad esempio un computer che studia per praticare uno sport corrispondente agli scacchi o al Go, non è la cosa migliore per questo tipo di navigazione.

“Insieme a , crei un campo nero che rende oscura la connessione tra l’ingresso, ciò che vede il robot, e l’uscita, o fa il robot”, afferma Thomas. “Potrebbe inoltre richiedere che il robotico fallisca molti casi prima di apprendere le chiamate corrette e non avevamo bisogno del nostro robotico per studiare andando a sbattere contro gli individui”.

Al contrario, lo studio autocontrollato è facile e comprensibile, il che significa che è più semplice vedere come la robotica sta facendo le sue scelte. Questa strategia può anche essere moderatamente incentrata sul punto piuttosto che sull’oggetto, il che suggerisce che la comunità ha una migliore interpretazione della conoscenza del sensore crudo, consentendo previsioni multimodali.

“Molte strategie convenzionali rilevano gli individui come oggetti personali particolari e creano traiettorie per loro. Tuttavia, poiché il nostro manichino è incentrato sul punto, il nostro algoritmo non quantifica gli individui come oggetti di una persona particolare, tuttavia riconosce le aree in cui devono essere gli individui. E se hai un gruppo più numeroso di individui, il regno diventerà più grande”, afferma Thomas.

“Questa analisi offre un percorso promettente che avrebbe implicazioni costruttive in aree corrispondenti alla guida autonoma e alla fornitura robotica, il luogo in cui un’ambientazione non è del tutto prevedibile”.

Prima o poi, la troupe desidera vedere se amplierà la propria comunità per studiare spunti più delicati dalle parti dinamiche di una scena.

“Questo può richiedere molte più conoscenze di coaching”, afferma Barfoot. “Ma sicuramente deve essere fattibile perché ci siamo prefissati di generare le informazioni in un metodo computerizzato aggiuntivo: il luogo in cui il robotico può raccogliere conoscenze extra durante la navigazione, praticare mode predittive più elevate quando non è in funzione, dopodiché usa queste la volta successiva naviga in un’area.


Un modello per migliorare la capacità dei robot di consegnare oggetti agli esseri umani


Informazioni extra:

Hugues Thomas, Matthieu Gallet de Saint Aurin, Jian Zhang, Timothy D. Barfoot, Studiare le mappe della griglia di occupazione spaziotemporale per la navigazione permanente in scene dinamiche. arXiv:2108.10585v2 [cs.RO], doi.org/10.48550/arXiv.2108.10585

Quotazione:
I ricercatori progettano robot “socialmente consapevoli” che possono anticipare e tenersi lontani dagli individui durante il trasferimento (2022, 18 maggio)
recuperato il 19 maggio 2022
da https://techxplore.com/information/2022-05-socially-aware-robots-safely-people.html

Questo documento è soggetto a copyright. A parte ogni onesto trattamento a fini di esame o analisi personale, n
la metà potrebbe anche essere riprodotta senza il permesso scritto. Il materiale contenuto viene fornito esclusivamente per funzioni informative.



The Ultimate Managed Hosting Platform

Source link

Continue Reading

Trending